-
振东集团的”本草革命”:让中药材跳出药罐子,闯出大健康新天地
发布时间:2025/06/10
红球纷飞传三晋,大爱无边漫九州。5月25日,由中国红十字会总会主办,山西振东健康产业集团赞助的“红气球挑战赛”(晋中站)在山西省高校新区(山西大学城)鸣笛开赛。该赛事汇聚了来自全国各地及山西大学城高校的...
-
振东集团:32年慈善长跑背后的“共富密码”
发布时间:2025/06/03
在商业与公益的天平上,山西振东健康产业集团选择了后者——即便负债也要坚持的”变态慈善”。这家从太行山走出的民营企业,用32年时间构建起一套独特的公益生态系统,累计捐赠超10亿元,将”与民同...
-
LAIFE「巢汐Tide」 新品发布会盛大召开,“美似潮汐,更迭永续”引领抗衰新潮流
发布时间:2025/01/14
近日,LAIFE乐梵举办了一场盛大的红宝瓶2.0新品发布会,吸引了众多业内人士及媒体的关注。 *LAIFE「巢汐Tide」美似潮汐、更迭永续新品发布会现场 LAIFE乐梵作为全球领先的长寿科技企业,一直致力于利用前沿科技为...
-
Weshare:专业金融服务平台,助力企业成长加速
发布时间:2024/09/04
进入新经济时代,随着创新创业和产业再升级,企业成长发展面临新的机遇和挑战,对人力、技术、资金、信息等资源的需求量剧增,大批成长性企业缺少专业化的金融“加速”服务。 Weshare为创新企业赋能 为应对企业发展...
-
第三批专项债六月底发完 项目完成审核
发布时间:2020/04/06
财政部副部长许宏才4月3日在新闻发布会上表示,今年以来,根据全国人大常委会授权,财政部提前下达了2020年部分新增专项债券额度12900亿元。截至2020年3月31日,全国各地发行新增专项债券1.08万亿元,占84%,发行...
-
国美零售转型加速 携拼多多“迎战”零售业大考
发布时间:2020/04/06
随着国内疫情初步得到控制,零售消费市场也在逐渐恢复运转。日前,国务院联防联控机制举办新闻发布会。商务部消费促进司负责人王斌在会上指出,将千方百计促进消费回补和潜力释放,壮大新型消费和升级消费,扩大...
-
美新冠疫情蔓延,建霖家居等IPO企业受累
发布时间:2020/04/06
编者按: 随着疫情蔓延,全球新冠肺炎确诊病例已突破百万,累计死亡超5万例,其中,美国确诊超过23万例,欧洲确诊超过50万例。作为全球经济重要力量的欧美地区,其疫情将对IPO企业产生什么影响? “有一天美国将成...
-
信托代销哪家强?招行去年赚64亿
发布时间:2020/04/04
证券时报记者 杨卓卿 随着银行年报密集披露,一些行业巨头代销信托产品的情况也浮出水面。 证券时报记者注意到,“零售之王”招商银行2019年代销的信托产品规模超过3000亿元,借此实现64.32亿元的手续费及佣金收入...
谷歌通过庞大的语言模型和数据集实现了最新的NLP性能
发布时间:2019/10/28 新闻 浏览次数:847
转移学习,或一种在数据丰富的任务上先对AI模型进行预训练,然后再对另一任务进行微调的技术,已成功地应用于从机器人到对象分类的领域。但是它在自然语言处理(NLP)子领域中具有特殊的希望,在自然语言处理(NLP)子领域中,它产生了多种基准测试方法。为了进一步完善它,谷歌的研究人员开发了一个新的数据集-巨大的干净爬行语料库-以及一个统一的框架和模型,称为“文本到文本转换器”,可以将语言问题转换为文本到文本格式。他们说,在使用有史以来提交给通用语言理解评估(GLUE)基准的最大模型之一进行的实验中,他们在基准上获得了最新的结果,涵盖了问题解答,文本分类等等。
一般而言,训练模型以执行NLP任务涉及确保模型开发出使其能够“理解”文本的知识-知识的范围从低级(例如单词的拼写或含义)到高级(例如大号太大,无法容纳大多数背包。 Google小组研究了一种方法,该方法将文本作为输入并产生新的文本作为输出,并将相同的目标,训练过程和解码过程应用于所考虑的每个任务。
他们编写的通用知识训练语料库中的片段(即上述的“巨大的干净爬行语料库”)来自Common Crawl项目,该项目每个月从网络上刮掉大约20 TB的英文文本。为了过滤出乱码,样板菜单和错误消息,它们仅保留以终端标点符号(句点,感叹号,问号或结束引号)结尾的文本行,同时删除带有明显填充文本和重复项的页面。所得到的集合比大约用于预训练的大多数数据集大了一个数量级,约为750 GB。
研究人员在语料库上训练了几种基于Transformer的模型,以评估其文本到文本方法的有效性。对于初学者来说,“变形金刚”是一种新型的神经体系结构,由Google AI研究部门Google Brain的科学家共同撰写,于2017年发表。与所有深层神经网络一样,它们包含排列在相互连接的层中的神经元(数学功能),这些层传输来自输入数据的信号并缓慢调整每个连接的突触强度(权重)。这就是所有AI模型提取特征并学习进行预测的方式,但是Transformers的独特之处在于,每个输出元素都连接到每个输入元素。它们之间的权重是动态,有效地计算的。
最大的模型包含多达110亿个参数,或进行预测时所需的模型内部配置变量。该小组说,他们对各种语言任务进行了微调,并在GLUE和阅读理解基准SQuAD和CNN / Daily Mail上取得了最新平均分数(89.7)。并在SuperGLUE上进行了测试,该软件包含的任务超出了当前NLP系统的范围,但可以由受过大学教育的演讲者解决,它以89.8的得分几乎与人类表现相当。
团队承认,他们的模型在诸如翻译之类的语言任务中不尽人意,他们将此归咎于特定任务数据的相对缺乏和培训规模的不足。因此,他们提倡研究使用较小的模型实现更强性能的方法,以便将转移学习应用于影响最大的地方。
该论文的合著者写道:“我们的研究得出的令人惊讶的但重要的结果是,较大的模型往往表现更好。” “用于运行这些模型的硬件一直在变得越来越便宜,功能越来越强大,这一事实表明,扩大规模可能仍然是实现更好性能的有前途的方法[Sutton,2019]。但是,在某些应用程序和场景中,总是存在使用较小或较便宜的模型有帮助的情况,例如在执行客户端推断或联合学习时。”